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ABSTRACT

This paper deals with the blind identification of the vari-
ances of the additive noises in a two-channel SIMO system.
They are estimated by using a frequency domain errors-in-
variables scheme, when finite impulse responses (FIR) filters
are driven by a white input sequence. It should be noted
that the proposed approach has the advantage of addressing
the unbalanced case, i.e. when the noise variances are not
the same. Moreover, the algorithm enables the solution to
be directly obtained from the noisy data and no optimization
algorithm is required.

1. INTRODUCTION

For the last years, a great deal of interest has been paid to sin-
gle input multiple output (SIMO) system identification [1]–
[5] in signal processing. Thus, in the framework of speech
enhancement based on two microphones, blind identifica-
tion methods such as [6] have been proposed to retrieve the
speech signal from reverberated observations disturbed by
additive noises. In mobile communications, identification
approaches have also been of interest to carry out equaliza-
tion of the received signal [7].

In the following, let us consider the SIMO system de-
picted in figure 1, wheres(k) denotes the input signal of
M = 2 filters, defined by their finite impulse responses (FIRs)
hi(k), (i = 1,2), with maximal orderL. The filter outputs
xi(k) are then disturbed by additive zero-mean noisesbi(k),
with varianceσ2

i , (i = 1,2). This yields the noisy observa-
tionsyi(k), (i = 1,2). Moreover,s(k) is assumed to be a sta-
tionary zero-mean white process with unit–variance, without
loss of generality.
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Figure 1: two-channel SIMO system

SIMO system identification consists in estimating the
FIRs and may include the estimations of the variances of the
additive noises1. Thus, Xu et al. [1] exploit the so–called

1It should be noted that, in some specific cases, the variance ofeach

cross–relations between the filtered outputs:

h j(k)∗xi(k) = h j(k)∗
(
hi(k)∗s(k)

)

=
(
hi(k)∗h j(k)

)
∗s(k) = hi(k)∗x j(k). (1)

For this purpose, they search the null space of a suit-
able positive hermitian block Toeplitz matrix, built
with the cross–correlation coefficients of the noisy fil-
ter outputs. As an alternative, the subspace based
method presented in [2] consists in retrieving the
span of the autocorrelation matrix RL of the vector
x(k) =

[
xT

1 (k) · · ·xT
M(k)

]T
with xi(k) = [xi(k) · · ·xi(k−L)]T .

It should be noted that both methods are equivalent when
dealing with two channels.

Adaptive approaches have also been studied, either in
the time domain [3] or in the frequency domain [4] [5].
They aim at minimizing the cross-relations error, i.e.
E

[
|h j(k) ∗ yi(k)−hi(k) ∗ y j(k)|2

]
and are based on the least

mean square (LMS) and Newton algorithms applied to the
noisy data.

However, the above methods cannot be used when the ad-
ditive noises do not have the same variance, i.e. when deal-
ing with the “unbalanced” case. Few methods deal with this
issue. In [6] and [8], the approach is based on the Frisch
scheme [9], which is a class of errors–in–variables (EIV) so-
lutions. The EIV models [11], initially developed in the fields
of statistics and identification, assume that the availabledata
are disturbed by additive error terms. Given a generic process
described byK variables{tk}k=1,··· ,K , the formulation of an
EIV estimation problem consists in determining, on the only
basis of noisy observations{zk = tk + nk}k=1,··· ,K , the set of
K-tuple{λk}k=1,··· ,K that satisfies:

λ1t1 +λ2t2 + · · ·+λKtK = 0

or equivalently,

R
T
t
[λ1 λ2 · · · λK ]

T
= 0 (2)

whereRt is the covariance matrix of{tk}k=1,··· ,K and the up-
perscriptT denotes the transpose.
When each noise termnk is assumed to be zero-mean, inde-
pendent of every other noise term and every variabletk, one
has:

Rt = Rz−Rn

whereRz andRn respectively denote the covariance matrix
of {zk}k=1,··· ,K and of{nk}k=1,··· ,K .

additive noise could be estimated independently of each other. In speech
processing, it could be updated during silent frames. Subspace methods
[10] could also be considered provided that the spectrum of the noise-free
signal is discrete. However, these cases are too restrictive and we propose
here to study a more general solution.
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At that stage, the so-called Frisch scheme [9] consists
in searching for the diagonal matricesRn which enable
Rz−Rn to be positive semidefinite:

Rz−Rn ≥ 0 (3)

When dealing with SIMO system identification, given the
cross relations (1) and by selectingK = 2L + 2, the set of
2L+2 variables{tk}k=1,..,2L+2 can be for instance defined as
follows:

[t1 · · · t2L+2]
T = [x2(k) · · ·x2(k−L) −x1(k) · · ·−x1(k−L)]T ,

whereas the(2L+2)-tuple(λ1, · · · ,λ2L+2) satisfies:

[λ1 · · ·λ2L+2]
T = [h1(0) · · ·h1(L) h2(0) · · ·h2(L)]T .

In that case,zk corresponds to the noisy observations. Ac-
cording to [8], solving (3) yields an infinite setSL of vari-
ances(σ2

1 ,σ2
2 ). In [6], we suggest carrying out once again

the Frisch scheme by selectingK = 2l +2 with l > L to find
the true variances which belong toSL∩Sl . Then, the impulse
responses can be retrieved according to (2). However, there
are two main drawbacks:
1. There may be spurious solutions ifl is not suitably cho-

sen (l −L must not be too low).
2. We do not take benefit of the fact that the true variances

belong to every setSl with l ≥ L. Indeed, for the sake of
simplicity and computation, only two Frisch schemes are
carried out.

Therefore, in this paper, we propose to develop a frequency
domain EIV approach for SIMO identification. This method
avoids the above drawbacks. The rest of the paper is orga-
nized as follows: section 2.1 deals with the variance estima-
tion issue. The identifiability conditions and the proposed
algorithms are introduced in section 2.3. Then, experimental
results are presented in section 3.

2. SIMO SYSTEM IDENTIFICATION IN THE
FREQUENCY DOMAIN

2.1 Focus on the variance estimation issue

Given the assumptions on the input signals(k) made in the
introduction above, the power spectrum density matrix of the
vector
x(k)=[x2(k) −x1(k)]

T is defined by:

X(w) :=

[
X11(w) X12(w)
X21(w) X22(w)

]

=

[
|H2(w)|2 −H2(w)H∗

1(w)
−H∗

1(w)H2(w) |H1(w)|2
]
.

X(w) is positive. In addition, it is singular since one has

det
(
X(w)

)
= 0.

Both properties are therefore denoted as follows:

X(w) ≥ 0. (4)

However, only the power spectrum densityY(w) of the noisy
observation vector y(k) = [y2(k) −y1(k)]

T is available.
According to figure 1, it satisfies:

Y(w) :=

[
Y11(w) Y12(w)
Y21(w) Y22(w)

]
= X(w)+B(w)

= X(w)+

[
σ2

2 0
0 σ2

1

]
. (5)

Taking into account (4) and (5), the noise variances are solu-
tions of the following equation system:

Xα1,α2(w) := det

(
Y(w)−

[
α1 0
0 α2

])
= 0 (6)

trace

(
Y(w)−

[
α1 0
0 α2

])
≥ 0

(
w∈ [−π;π]

)
(7)

whereα1 andα2 are the unknowns.
Estimating the noise variances is very useful as it makes

it possible to estimateX(w) and consequently to retrieve
the impulse responseshi(k) (i = 1,2) since equation (2), or
equivalently equation (1), can be rewritten in the frequency
domain as follows:

Ker
(
XH(w)

)
= Span

[
H1(w)
H2(w)

]

In the next two subsections, we will study how to solve
the system (6)-(7), and will present algorithms for the noise
variance estimation.

2.2 First approach to blindly estimate the variances

In addition to the trivial solution(σ2
1 ,σ2

2 ), the system (6) and
(7) admits another solution if and only if one can find
(γ,ρ) ∈ R

∗
+ ×R

∗ such as

X11(w)− γX22(w) = ρ. (8)

See appendix 1 for proof.
Then, a first approach we could consider to blindly es-

timate the noise variances would consist in minimizing the
following cost function:

J1(α1,α2) =
∥∥∥Xα1,α2(w)

∥∥∥
2
=

〈
Xα1,α2(w)

∣∣∣Xα1,α2(w)
〉

(9)

where< .|. > denotes the hermitian product defined as fol-
lows:

〈
A(w)

∣∣B(w)
〉

=
1

2π

∫ π

−π
A(w)B∗(w)dw. (10)

The hermitian product (10) can be expressed by using
the Fourier coefficients of the 2π-periodic functionsA(w)
and B(w), denotedak and bk respectively. Indeed, since
A(w) = ∑

k∈Z

akejkw andB(w) = ∑
k∈Z

bkejkw, one obtains

〈
A(w)

∣∣B(w)
〉

=
1

2π

∫ π

−π

(
∑
k∈Z

akejkw
)(

∑
k∈Z

bkejkw
)∗

dw

=
1

2π

∫ π

−π
∑
n∈Z

[

∑
k∈Z

ak(bk−n)∗
]

ejnwdw

= ∑
k∈Z

ak(bk)∗
.

Therefore, when dealing with hermitian products between
the elements of the power spectrum density matrices such
asXi j (w) for instance(i, j = 1,2), the hermitian product can
be hence defined from the intercorrelation sequences ofxi(k)
andx j(k).
The gradient ofJ1(α1,α2) is given by

∂J(α1,α2)

∂αi
= 2

〈∂Xα1,α2(w)

∂αi

∣∣∣Xα1,α2(w)
〉
, (i = 1,2),
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When cancelling it, the following two equations have to be
solved:

α1 = φ2(α2) (11)

: =
y0

11α2
2−

(
g0+

〈
Y22(w)|Y11(w)

〉)
α2+

〈
Y22(w)|G(w)

〉

α2
2 −2y0

22α2 +‖Y22(w)‖2

α2 = φ1(α1) (12)

: =
y0

22α2
1−

(
g0+

〈
Y11(w)|Y22(w)

〉)
α1+

〈
Y11(w)|G(w)

〉

α2
1 −2y0

11α1 +‖Y11(w)‖2
.

The solution of (11) end (12) are given by searching the roots
of a 5th degree real polynomial, depending on eitherα1 or α2.

In theory, the variances of the additive noises can be ob-
tained as follows:
• when the trivial solution(σ2

2 ,σ2
1 ) is the only solution to

the equation (6), it can be obtained by minimizing the
cost functionJ1(α1,α2).

• When there are two solutions to the equation (6), that
can be also found by minimizingJ1(α1,α2), there exists
γ ∈ R

∗ andρ ∈ R
∗ such as

X11(w)− γX22(w) = ρ. (13)

See appendix 2. However, whenγ > 0, only the trivial
solution satisfies (7).
Nevertheless, in real cases and when (6) admits two so-

lutions, the cost functionJ1(α1,α2) can then have very small
values in the neighborhood of theses solutions. As a conse-
quence, retrieving them becomes a hard task, due to the er-
rors introduced when computingY(w) from a finite number
of available samples:
• on the one hand,B(w) is not diagonal.
• On the other hand, the unbiased estimates of the intercor-

relation sequences are considered.
To illustrate this point, let us consider the example given be-
low where the two following FIRs satisfy:

h1 =
{

2,1,−1,2
}

h2 =
{4

3
,
−65+

√
5521

54
,
65−

√
5521

24
,3

}
,

In figure 2 the theoritical cost functionJ1(α1,α2) plot-
ted in dB exhibits the trivial solution and the spurious one.
Nevertheless, it takes very small values in the neighborhood
of both solutions. In figure 3, when a real simulation is com-
pleted withN = 10000 observations samples ofy1 andy2, the
estimated cost functionJ1(α1,α2) does not make it possible
to point out the true solution.
More generally, we will see that this problem happens when

∣∣〈X̃11(w)
∣∣X̃22(w)

〉∣∣ =
∥∥∥X̃11(w)

∥∥∥
∥∥∥X̃22(w)

∥∥∥

whereX̃11(w) abdX̃22(w) are defined as follows:

X11(w) = X̃11(w)+x0
11 (14)

X22(w) = X̃22(w)+x0
22, (15)

with x0
11 =< X0

11(w)|1 > andx0
22 =< X0

22(w)|1 > denoting
the mean values ofX11(w) andX11(w) respectively. This will
be confirmed in the next subsection.
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Spurious solution

True solution

Figure 2: theoritical criterionJ1(α1,α2) when a spurious so-
lution to (6) exists. Here,γ > 0.
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Figure 3: criterionJ1(α1,α2) in dB, in a real case while a
spurious solution to (6) should have existed.N = 10000.

2.3 Second approach to blindly estimate the noise vari-
ances

We propose a new criterion to estimate the noise variances
when the equation (6) has a single solution. It is based on the
following property. Let us assume that bothX̃11(w) 6= 0 and
X̃22(w) 6= 0, andX11(w) 6= X22. According to appendix 2, we
have:

(a) Xα1,α2(w) = 0 has a single solution ⇔
(b) X̃α1,α2(w) = 0 has a single solution ⇔
(c)

∣∣〈X̃11(w)
∣∣X̃22(w)

〉∣∣ <

∥∥∥X̃11(w)
∥∥∥
∥∥∥X̃22(w)

∥∥∥ (16)

whereX̃α1,α2(w) is defined as in (14)-(15).
Then, when there is a single solution to equation (6), it can
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be found by solving equation

X̃α1,α2(w) = 0.

Therefore, we propose to minimize the following criterion:

J2(α1,α2)=
∥∥∥X̃α1,α2(w)

∥∥∥
2

=
∥∥∥G̃(w)−α1Ỹ22(w)−α2Ỹ11(w)+α1α2

∥∥∥
2

(17)

whereG(w)=Y11(w)Y22(w)−Y21(w)Y12(w) andG̃(w) is de-
fined as in (14)-(15).
J2(α1,α2) is a quadratic function. Equating to zero the gra-
dient ofJ2(α1,α2) leads to the following equations:

〈
−Ỹ22(w)

∣∣∣ G̃(w)−α2Ỹ11(w)−α1Ỹ22(w)
〉

= 0
〈
−Ỹ11(w)

∣∣∣ G̃(w)−α1Ỹ22(w)−α2Ỹ11(w)
〉

= 0

One finally deduces:

α1 =
−

〈
Ỹ22(w)|Ỹ11(w)

〉
α2 +

〈
Ỹ22(w)|G̃(w)

〉

‖Ỹ22(w)‖2
(18)

α2 =
−

〈
Ỹ22(w)|Ỹ11(w)

〉
α1 +

〈
Ỹ11(w)|G̃(w)

〉

‖Ỹ11‖2
(19)

Hence, this linear system can be re-written as follows:



1

〈
Ỹ22(w)|Ỹ11(w)

〉

‖Ỹ22(w)‖2〈
Ỹ22(w)|Ỹ11(w)

〉

‖Ỹ11(w)‖2 1




︸ ︷︷ ︸
M

[
α1
α2

]
=




〈
Ỹ22(w)|G̃(w)

〉

‖Ỹ22(w)‖2〈
Ỹ11(w)|G̃(w)

〉

‖Ỹ11(w)‖2




One retrieves the condition (16)-(c) by imposing det(M) > 0.
It should be noted that the condition (7) is no longer nec-

essary when equation (6) is assumed to have a unique solu-
tion.

3. RESULTS

We propose to illustrate the algorithm with two examples.
The first example deals with aL=2nd order system, the

FIRs corresponding to the following transfert functions are
defined by:

H1(z) = 1+z+z−1 and H2(z) = 1−z+z−1
.

N = 150 samples are assumed to be available. Moreover, the
two curves in the plan(α1,α2) defined by the relations (11)
and (12) for the first algorithm, and the two lines in the plane
(α1,α2) defined by the relations (18) and (19) for the second
algorithm, are represented in figure 4.

In the second example, the proposed algorithms are
then tested with higher-order systems (L = 100), whose time
and frequential domain representations are given in figure 5.
Here, N = 1000 samples are available. The good perfor-
mances are illustrated in figure 6.

Numerical results based on Monte Carlo simulations are
given in Table 1 and 2, respectively for the examples 1 and 2.
In each case, the signal–to–noise ratios (SNR) for each chan-
nel are respectively equal toSNR1 =10dB andSNR2 =5dB.
The estimations of the variances provided by the cost func-
tions J1(α1,α2) (9) andJ2(α1,α2) (17) are compared. In
every case, only few samples (i.e. a few hundred) are re-
quired to estimate the pair(σ2

1 ,σ2
2 ).
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1
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1
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2
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1
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Figure 4: noise variances estimation for example 1.
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Figure 5:Lth order FIR and their spectral representations.
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Figure 6: noise variances estimation for example 2.

Table 1: variance estimation and standard deviation based on
100 noise realizations, for the SIMO system of example 1.

example 1 σ2
1 = 0.290 σ2

2 = 0.998

CriterionJ1(α1,α2) 0.383±0.054 0.930±0.100

CriterionJ2(α1,α2) 0.498±0.121 1.042±0.173

Table 2: variance estimation and standard deviation based on
100 noise realizations, for the SIMO system of example 2.

example 2 σ2
1 = 0.776 σ2

2 = 2.318

CriterionJ1(α1,α2) 1.252±0.357 1.836±0.338

CriterionJ2(α1,α2) 1.506±0.447 2.188±0.427

4. CONCLUSION

In this paper, the variance estimation issue in the unbalanced
case is addressed. For this purpose, we propose a frequency
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domain errors-in-variables approach. More particularly,we
investigate a first criterion and its the limits and hence pro-
pose an alternative one. This criterion has the advantage of
being simpler than the previous one since it is quadratic.

5. APPENDIX 1

Let us assume that(α1,α2) 6= (σ2
2 ,σ2

1 ) is a solution of (6).
Then,α1 6= σ2

2 AND α2 6= σ2
1 . By rewritting (6) as follows:

(
X11(w)+σ2

2 −α1

)(
X22(w)+σ2

1 −α2

)
=X11(w)X22(w),

there is necessarilyγ ∈ R
∗ such that:

X11(w)+σ2
2 −α1 = γX22(w) (20)

X22(w)+σ2
1 −α2 =

1
γ

X11(w). (21)

Moreover, since the pair(α1,α2) also satisfies (7), one de-
duces:

X11(w)+X22(w)+σ2
2 −α1 +σ2

1 −α2

=γX22(w)+
1
γ

X11(w) ≥ 0

Necessarily,γ > 0. By introducingρ = α1−σ2
2 and in the

relation (20), one obtains (8).

Now, one assumes thatX11(w)− γX22(w) = ρ with
γ > 0 andρ ∈ R

∗. Then, the pair(α1,α2) = ρ +σ2
2 ,σ2

1 −
ρ
γ

is a non-trivial solution of (6). Moreover, one can write:

trace

(
X(w)+

[−ρ 0
0 ρ

γ

])
=

(
X11(w)−ρ

)
+

(
X22(w)+

ρ
γ

)

According to relation (8) and since bothγ > 0 and the func-
tionsX11(w) andX22(w) are positive, one has:

X11(w)−ρ = γX22(w) ≥ 0

X22(w)+
ρ
γ

=
1
γ

X11(w) ≥ 0

Finally, one obtains

trace

(
X(w)+

[−ρ 0
0 ρ

γ

])
≥ 0.

So,(ρ +σ2
2 ,σ2

1 −
ρ
γ ) satisfies the relation (7).

6. APPENDIX 2

Proof: Let us first expand the equation (6) as follows:

Xα1,α2(w) = 0 ⇔




(i) X̃α1,α2(w) = 0
(ii) (σ2

1 −α2)x0
11+(σ2

2 −α1)x0
22

+(σ2
1 −α2)(σ2

2 −α1) = 0.

(22)

whereX̃α1,α2(w) can be developped as follows:

X̃α1,α2(w) = (σ2
1 −α2)X̃11(w)+(σ2

2 −α1)X̃22(w).

Hence,(b) ⇒ (a). To prove the converse part, let us assume
a non-zero solution to (22)-(i). Thenα1 6= σ2

2 AND α2 6= σ2
1

since bothX̃11(w) 6= 0 andX̃22(w) 6= 0. As a consequence,
there isγ ∈ R

∗ such as:

(σ2
2 −α1) = −γ(σ2

1 −α2) (23)

X̃11 = γX̃22. (24)

Substituing (23) and (24) in (22)-(ii ) yields the following re-
lation:

α1 = σ2
2 − γx0

22+x0
11 (25)

α2 = σ2
1 −

x0
11

γ
+x0

22 (26)

Finally, since X11(w) 6= X22, −γx0
22 + x0

11 6= 0, the pair
(α1,α2) defined by the relations (25) and (26) satisfies
α1 6= σ2

2 andα2 6= σ2
1 , and is solution of (6), that contradicts

(a).

(b) ⇔ (c) since both(b) and(c) means that̃X11 andX̃22
are not colinear.

REFERENCES

[1] G. Xu, H. Liu, L. Tong and T. Kailath, A Least–squares
approach to blind channel identification,IEEE Trans. on
Signal Processing, vol. 43, pp. 2982–2993, Dec. 1995.

[2] E. Moulines, P. Duhamel, J. F. Cardoso and S. Mayrar-
gue, Subspace methods for the blind identification of
multichannel FIR filters,IEEE Trans. on Signal Process-
ing, vol. 43, pp. 516–525, Feb. 1995.

[3] Y. A. Huang and J. Benesty, Adaptive multi–channel
least mean square and Newton algorithms for blind chan-
nel identification,Signal Processing, vol. 82, pp. 1127–
1138, Aug. 2002.

[4] Y. A. Huang and J. Benesty, A class of frequency–
domain adaptive approaches to blind multichannel iden-
tification, IEEE Trans. on Signal Processing, vol. 51, pp.
11–24, Jan. 2003.

[5] R. Ahmad, A. W. H. Khong and P. A. Taylor, Propor-
tionate frequency domain adaptive algorithms for blind
channel identification,ICASSP 2006, May 2006, vol. 5,
pp. 29–32.

[6] W. Bobillet, E. Grivel, R. Guidorzi and M. Najim, Noisy
speech dereverberation as a SIMO system identification
issue,IEEE SSP 2005, Jul. 2005. X, Y, Z and T, SSP
2005.

[7] A. Gorokhov, Blind equalization in SIMO OFDM sys-
tems with frequency domain spreading,IEEE Trans. on
Signal Processing, vol. 48, pp. 3536–3549, Dec. 2000.

[8] R. Diversi, R. Guidorzi and U. Soverini, Blind identifi-
cation and equalization of two–channel FIR systems in
unbalanced noise environments,Signal Processing, vol.
85, pp. 215–225, Jan. 2005.

[9] S. Beghelli, R. Guidorzi and U. Soverini, The Frisch
scheme in dynamic system identification,Automatica,
vol. 26, pp. 171–176, Jan. 1990.

[10] S. Van Huffel, Enhanced resolution based on minimum
Variance estimation and exponential data modeling,Sig-
nal Processing, vol. 33, pp. 333-355, Sep. 1993.

[11] S. V. Huffel and P. Lemmerling, Total least squares and
errors-in-variables modeling. Dordrecht, Netherlands:
Kluwer Academic Publisher, 2002.

©2007 EURASIP 524


	MAIN MENU
	Front Matter
	Sessions
	Author Index

	Search
	Print
	View Full Page
	Zoom In
	Zoom Out
	Go To Previous Document
	Help

